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CHAPTER I

Metric Spaces

Abstract. The chapter introduces the initial definitions regarding metric

spaces, subspaces, open and closed sets, and product spaces.

1. Metric Spaces

Definition I.1. Let X be a set. A metric on X is a function

ρ : X ×X → R
satisfying

(M1) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y (Positivity);
(M2) ρ(x, y) = ρ(y, x) (Symmetry);
(M3) ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (Triangle Inequality).

The pair (X, ρ) is called a metric space.

Example I.2. Let X be any set and define ρ : X ×X → R by

ρ(x, y) =

{
0 if x = y;
1 otherwise .

Then ρ is a metric on X, called the discrete metric, and (X, ρ) is called a discrete
metric space.

Proof. In order to prove that (X, ρ) is a metric space, we need to demonstrate (M1),
(M2), and (M3). We take the opportunity of this simple example to discuss some
general assumptions we can make in the course of such a proof.

(M1) We have two things to verify; that the image of ρ consists only of non-
negative reals, and that ρ(x, x) = 0 for every x ∈ X. The first is immediate upon
inspection of the definition, and in general won’t need to be mentioned unless there
is some doubt. The second is directly provided by the definition.

(M2) Let x, y ∈ X. If x = y, then ρ(x, y) = 0 = ρ(y, x). Note that if (M1) if
already verified, then this case need not be considered.

Thus suppose that x and y are distinct. Then ρ(x, y) = 1 = ρ(y, x).
(M3) Let x, y, z ∈ X. If x = z, and (M1) is already verified, then this

condition says that 0 ≤ ρ(x, y) + ρ(y, z), which is true. If x = y or y = z, this
statement becomes an immediate equality. So again, we can assume that x, y, and
z are distinct. Then

ρ(x, z) = 1 < 2 = ρ(x, y) + ρ(y, z).

�
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2 I. METRIC SPACES

Example I.3. Let x = R and define ρ(x, y) = |x − y|. Then (X, ρ) is a metric
space.

Proof. We address (M1), (M2), and (M3).
(M1) The absolute value is always nonnegative, and the absolute value of zero

is zero, so ρ(x, x) = |x− x| = |0| = 0. On the other hand, if x 6= y, then x− y 6= 0,
so ρ(x, y) = |x− y| 6= 0.

(M2) Let x, y ∈ R; without loss of generality, assume that x > y. Then
ρ(x, y) = |x− y| = x− y = −(y − x) = |y − x| = ρ(y, x).

(M3) Let x, y, z ∈ R; we have seen that |a + c| ≤ |a + b| + |b + c| for every
a, b, c ∈ R. Set a = x− y, b = 0, and c = y − z. Then a + c = x− y, a + b = x− y,
and b + c = y − z. Thus

ρ(x, z) = |x− z| ≤ |x− y|+ |y − z| = ρ(x, y) + ρ(y, z).

�

Example I.4. Let X = Rk and define

ρ(x, y) =

√√√√ k∑
i=1

(xi − yi)2,

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

Remark. The positivity and symmetry of ρ are clear, but the proof of the triangle
inequality is involved, and appears in the last section of this chapter, where it is
generalized to the product of a finite number of metric spaces. �

Example I.5. Let R∞ denote the set of all sequences of real numbers that are
eventually zero, that is, sequences (xn) such that xn = 0 for all but finitely many
n. Let X = R∞ and for x, y ∈ X, define

ρ(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where x = (xn) and y = (yn). This make sense, since there are only finitely many
nonzero summands. Then (X, ρ) is a metric space.

Example I.6. Let `2 denote the set of all sequences of real numbers (xn) that
satisfy the converge criterion

∞∑
i=1

x2
i < 0.

Let X = `2 and for x, y ∈ X, define

ρ(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where x = (xn) and y = (yn). That this series converges follows from the inequality

(a± b)2 ≤ 2(a2 + b2),

which the reader is welcome to verify. Then (X, ρ) is a metric space.
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Example I.7. Let X = Q and let p be a positive prime integer. For each x ∈ Q,
there exists unique m,n, α ∈ Z such that x = pα m

n , where gcd(m,n) = 1 and p

does not divide m or n. The p-adic norm of x is |x|p = 1
pα . Set ρ(x, y) = |x− y|p.

Then (X, ρ) is a metric, known as the p-adic metric on Q. Here one can show
that not only does ρ satisfy the triangle inequality, but also the stronger inequality
|x− y|p ≤ max{|x|p, |y|p}.

Exercise I.1. Let F[a,b] denote the set of all bounded functions f : [a, b] → R. Let
X = F[a,b] and for f, g ∈ X define

ρ(f, g) = max{|f(x)− g(x)| | x ∈ [a, b]}.
Show that (X, ρ) is a metric space.

Exercise I.2. Let C[a,b] denote the set of all continuous functions f : [a, b] → R.
Let X = C[a,b] and for f, g ∈ X define

ρ(f, g) =
∫ b

a

|f − g| dx.

Show that (X, ρ) is a metric space.
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2. Metric Subspaces

Definition I.8. Let (X, ρ) be a metric space and let A ⊂ X. ’ Let ρA : A×A → R
be the restriction of ρ to A× A ⊂ X ×X. Then ρA is a metric on A, and (A, ρA)
is called a subspace of (X, ρ).

Example I.9. Let X = R2, and define

ρ : R2 × R2 → R by ρ(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2,

where pi = (xi, yi). Then ρ is the standard metric on R2.
Define

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.
We call S1 the unit circle. It inherits the metric ρS1 from (R2, ρ).

Define
D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

We call D2 the (closed) unit disk, and (D2, ρD2) is a metric space.

Example I.10. Let S1 be the unit circle, and let ρ be as in Example I.9. We may
define a metric

α : S1 × S1 → R by α(p1, p2) = 2 arcsin(ρ(p1, p2)).

where p1, p2 ∈ S1. Then α(p1, p2) is the angle, measured in radians, from p1 to the
origin and then to p2; this is the arclength of the shortest path between these two
points.

This produces a different metric on S1. In due course, we will investigate the
relationship between these metrics and related consequences for the structure of
the metric space.

Example I.11. Let X = R3, and define

ρ : R3 × R3 → R by ρ(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2,

where pi = (xi, yi, zi). Then ρ is the standard metric on R3.
Define

S2 = {(x, y, z) ∈ R2 | x2 + y2 + z2 = 1}.
We call S2 the unit sphere, and (S2, ρS2) is a metric space.

Define
D3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}.

We call D2 the (closed) unit ball, and (D3, ρD3) is a metric space.
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3. Product Metric Spaces

The definition of distance in Rk has been computed using k − 1 applications
of the Pythagorean Theorem; it is clearly the definition that we want. However, in
order to apply results to Rk that we have proven from the metric axioms, we need
to first prove that Rk is indeed a metric space. This involves a demonstration of
the triangle inequality; that is, given

x = (x1, . . . , xk), y = (y1, . . . , yk), z = (z1, . . . , zk),

we need to show that√√√√ k∑
j=1

(xj − zj)2 ≤

√√√√ k∑
j=1

(xj − yj)2 +

√√√√ k∑
j=1

(yj − zj)2.

Proving this directly would make use of the triangle inequality

|a− c| ≤ |a− b|+ |b− c|

in R, and an application of the Cauchy-Schwartz Inequality (below). With approx-
imately the same effort, we can generalize this result to construct the product of a
finite number of arbitrary metric spaces. The definition of distance in the product
space is motivated by our previous use of the Pythagorean Theorem.

Theorem I.12. Let (X1, ρ1), . . . , (Xn, ρn) be a finite collection of metric spaces.
Let X = ×n

k=1Xk, and define ρ : X ×X → R by

ρ(x, y) =

√√√√ n∑
k=1

ρk(xk, yk)2,

where x = (x1, . . . , xn) and y = (y1, . . . , yn), and xk, yk ∈ Xk for k = 1, . . . , n.
Then (X, ρ) is a metric space.

We call ρ the product metric on X. The difficulty of the proof of this proposi-
tion lies in the triangle inequality, a computation which we will break into several
intermediate results.

Lemma I.13. Let ak, bk ∈ R for k = 1, . . . , n. Then∑
i

∑
j

(aibj − ajbi)2 = 2
∑
i 6=j

(a2
i b

2
j − aiajbibj).

Proof. Note that

(aibj − ajbi)2 = a2
i b

2
j + a2

jb
2
i − 2aiajbibj .

Then ∑
i

∑
j

(aibj − ajbi)2 =
∑

i

∑
j

(a2
i b

2
j + a2

jb
2
i − 2aiajbibj)

= 2
∑
i 6=j

(a2
i b

2
j − aiajbibj).

�
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Lemma I.14. Let ak, bk ∈ R for k = 1, . . . , n. Then( n∑
k=1

akbk

)2

=
n∑

k=1

a2
k

n∑
k=1

b2
k −

1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2.

Proof. Compute that∑
k

a2
k

∑
k

b2
k =

∑
k

a2
kb2

k + 2
∑
i 6=j

a2
i b

2
j

=
( ∑

k

a2
kb2

k + 2
∑
i 6=j

aiajbibj

)
− 2

∑
i 6=j

aiajbibj + 2
∑
i 6=j

a2
i b

2
j

=
( ∑

k

akbk

)2

+ 2
( ∑

i 6=j

a2
i b

2
j −

∑
i 6=j

aiajbibj

)
.

Subtracting the equation of Lemma I.13 to both sides implies the result. �

Lemma I.15 (Cauchy-Schwartz Inequality). Let ak, bk ∈ R for k = 1, . . . , n. Then( n∑
k=1

akbk

)2

≤
n∑

k=1

a2
k

n∑
k=1

b2
k.

Proof. This follows from Lemma I.14 by noting that
∑n

i=1

∑n
j=1(aibj − ajbi)2 is

always nonnegative. �

Lemma I.16. Let ak, bk, ck ∈ R be positive for k = 1, . . . , n. Then√√√√ n∑
k=1

a2
k ≤

√√√√ n∑
k=1

b2
k +

√√√√ n∑
k=1

c2
k.

Proof. For k = 1, . . . , n, we have ak ≤ bk + ck, so a2
k ≤ b2

k + c2
k + 2bkck. Thus

(*)
n∑

k=1

a2
k ≤

n∑
k=1

b2
k +

n∑
k=1

c2
k + 2

m∑
k=1

bkck.

Now by Lemma I.15, we have( n∑
k=1

bkck

)2

≤
n∑

k=1

b2
k

n∑
k=1

c2
k.

Take the square root of both sides to obtain( n∑
k=1

bkck

)
≤

√√√√ n∑
k=1

b2
k

n∑
k=1

c2
k.

Combine this with inequality (*) to obtain

n∑
k=1

a2
k ≤

n∑
k=1

b2
k +

n∑
k=1

c2
k + 2

√√√√ n∑
k=1

b2
k

n∑
k=1

c2
k

Taking the square root of both sides produces the result. �
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Proof of Theorem I.12. The positivity of ρ is clear from the use of positive square
root in the definition, and the symmetry is given by the symmetry of the metric
on the constituent spaces. Thus is suffices to demonstrate the triangle inequality.
Let ak = ρ(xk, zk), bk = ρ(xk, yk), and ck = ρ(yk, zk). By the triangle inequality in
the constituent spaces, we have ak ≤ bk + ck for i = 1, . . . , n. Apply Lemma I.16
to obtain the result. �

Example I.17. Let (X, ρ) be a metric space, and let Xk denote the cartesian
product of k copies of X, endowed with the product metric.

Example I.18. Let Rk denote the cartesian product of k copies of the real line.
The product metric on Rk as defined in Example I.4 is the same as that defined in
Theorem I.12.

Example I.19. Let S1 = {(x, y) ∈ R2 | x2 + y2} be the unit circle, considered as
a metric subspace of R2. Let T = S1× S1, endowed with the product metric. Then
T is a torus.





CHAPTER II

Metric Topology

Abstract. The chapter discusses bounded sets, open sets, closed sets, and

neighborhoods in a metric space.

1. Bounded Sets

Definition II.1. Let (X, ρ) be a metric space, and let A ⊂ X. Define the diameter
of A with respect to ρ to be

diam(A) = sup{ρ(a, b) | a, b ∈ A};
by convention, the diameter of an empty set is zero. Note that diam(A) is an
extended real number which can be ∞.

We say that A is bounded if diam(A) < ∞.

Proposition II.2. Let (X, ρ) be a metric space, and let A,B ⊂ X. Then
(a) diam(A) = 0 ⇔ |A| ≤ 1;
(b) A ⊂ B ⇒ diam(A) ≤ diam(B);
(c) A ∩B 6= ∅ ⇒ diam(A ∪B) ≤ diam(A) + diam(B).

Proof. Recall that |A| is the cardinality of A, and is defined to be the number of
elements in A. If A contains at least two distinct elements, the distance between
them is positive, so the diameter of A is greater than 0. On the other hand, if A
contains exactly one element, say A = {a}, then {ρ(a, b) | a, b ∈ A} = {ρ(a, a)} =
{0}, and the supremum of this set is zero.

Suppose A ⊂ B ⊂ X. Set SA = {ρ(a1, a2) | a1, a2 ∈ A}, and SB = {ρ(b1, b2) |
b1, b2 ∈ B}. Clearly SA ⊂ SB , so diam(A) = sup(SA) ≤ sup(SB) = diam(B).

Finally, suppose that A,B ⊂ X and that A ∩ B 6= ∅. Suppose that diam(A ∪
B) > diam(A) + diam(B), and let ε = 1

2 (diam(A ∪ B) − (diam(A) + diam(B))).
Then, from the definition of diameter, there exist points c1, c2 ∈ A ∪ B such that
diam(A ∪B)− ρ(c1, c2) > ε. �

Exercise II.1. Let (X, ρ) be a metric space, and let G = diam(A) with respect to
ρ. Define a function

ρ̂ : X ×X → R by ρ̂(x, y) =
ρ(x, y)

1 + ρ(x, y)
.

(a) Show that ρ̂ is a metric on X.
Let H = diam(X) with respect to ρ̂.

(b) Show that H ≤ 1.
(c) Show that if G = ∞, then H = 1.
(d) Show that if X is finite, then H = G

1+G .

9
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2. Open Sets

Definition II.3. Let (X, ρ) be a metric space. Let x0 ∈ X and let δ > 0. Set

B(x0, δ) = {x ∈ X | ρ(x, x0) < δ};

this is known as an open ball about x0 of radius δ.
Let U ⊂ X. We say that U is open if

∀u ∈ U∃δ > 0 | B(x0, δ) ⊂ U.

Proposition II.4. Let (X, ρ) be a metric space, and let A ⊂ X. Then A is open
if and only if A can be expressed as a union of open balls.

Proof. Suppose that A is open; then for every a ∈ A there exists δa > 0 such that
B(a, δa) ⊂ A. Then

A = ∪a∈AB(a, δa),
so A is a union of open balls.

On the other hand, suppose that A is the union of open balls. Let a ∈ A. Then
a ∈ B(x, δ) for some x ∈ X and δ > 0, where B(x, δ) ⊂ A. Then B(a, δ−ρ(x, a)) ⊂
B(x, δ). To see this, let b ∈ B(a, δ − ρ(x, a)). Then the triangle inequality implies
that

ρ(x, b) ≤ ρ(x, a) + ρ(a, b) ≤ ρ(x, a) + (δ − ρ(x, a)) = δ.

Thus B(a, δ) ⊂ B(x, δ) ⊂ A, and A satisfies the definition of an open set. �

Proposition II.5. Let (X, ρ) be a metric space. Then
(a) The sets ∅ and X are open.
(b) The union of any collection of open subsets of X is open.
(c) The intersection of any finite collection of open subsets of X is open.

Proof. The empty set vacuously satisfies the condition for openness; every x ∈ ∅
has an open ball contained in ∅, because there is no x ∈ ∅. If x ∈ X, then
B(x, 1) ⊂ X by definition of B(x, 1).

Suppose that {Uα | α ∈ I} is a collection of open subsets of X indexed by the
indexing set I. Let U = ∪α∈IUα. Let x ∈ U . Then x ∈ Uα for some α ∈ I. Since
Uα is open, B(x, δ) ⊂ Uα for some δ > 0. Then B(x, δ) ⊂ U , since Uα ⊂ U . Thus
U is open.

Suppose that {U1, . . . , Un} is a finite collection of open subsets of X. Let U =
∩n

i=1Ui, and let x ∈ U . Then x ∈ Ui for i = 1, . . . , n. Since each of these is open,
there exist positive real number δ1, . . . , δn such that x ∈ B(x, δi) for i = 1, . . . , n.

Set δ = min{δ1, . . . , δn}. Then B(x, δ) ⊂ Ui for i = 1, . . . , n. Thus B(x, δ) ⊂
∩n

i=1Ui = U . In this way, we see that U is open. �

Definition II.6. Let X be a set. A topology on X is a collection of subsets
T ⊂ P(X) satisfying

(T1) ∅ ∈ T and X ∈ T;
(T2) if U ⊂ T, then ∪U ∈ T;
(T3) if U ⊂ T and U is finite, then ∩U ∈ T.

The elements of T are called open sets. The pair (X, T) is called a topological space.

Observation II.1. If (X, ρ) is a metric space, then the collection of open subsets of
X is a topology on X.
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3. Closed Sets

Definition II.7. Let (X, ρ) be a metric space. Let F ⊂ X. We say that F is
closed if X r F is open.

Warning II.1. Just because a set is not open does not mean that it is closed. For
example, [1, 2) ⊂ R is neither.

Proposition II.8. Let (X, ρ) be a metric space. Then
(a) The sets ∅ and X are closed.
(b) The intersection of any collection of closed subsets of X is closed.
(c) The union of any collection of closed subsets of X is closed.

Proof. Recall DeMorgan’s Laws, which state that the union of complements is the
complement of the intersection, and the intersection of complements is the com-
plement of the union. Then Proposition II.8 follows from Proposition II.5 and
DeMorgan’s Laws. �

4. Interior, Closure, and Boundary

Definition II.9. Let (X, ρ) be a metric space, and let A ⊂ X. The interior of A
is the union of all open subsets of A:

A◦ =
⋂

U⊂A
U is open

U.

Since the union of open sets is open, this is clearly the largest open subset of A.

Proposition II.10. Let (X, ρ) be a metric space and let A ⊂ X. Then A is open
if and only if A = A◦.

Definition II.11. Let (X, ρ) be a metric space, and let A ⊂ X. The closure of A
is the intersection of all closed subsets of X which contain A:

A =
⋂

A⊂F
F is closed

F.

Since the intersection of closed sets is closed, this is clearly the smallest closed
subset of X which contains A.

Proposition II.12. Let (X, ρ) be a metric space and let A ⊂ X. Then A is closed
if and only if A = A.

Definition II.13. Let (X, ρ) be a metric space and let A ⊂ X. The boundary of
A is ∂A = A r A◦.
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5. Neighborhoods

Definition II.14. Let (X, ρ) be a metric space and let x ∈ X. A basic open
neighborhood of x is an open ball of the form B(x, δ) for some δ > 0. An open
neighborhood of x is any open subset of X which contains x. A neighborhood of x
is any subset of X which contains an open neighborhood of x.

Exercise II.2. Let (X, ρ) be a metric space. Let x ∈ X and let A,B ⊂ X be
neighborhoods of x. Show that A ∩B is a neighborhood of x.

Definition II.15. If A and B are sets, we say that A intersects B if A ∩B 6= ∅.
Let (X, ρ) be a metric space. Let A ⊂ X and x ∈ X.
We say that x is an interior point of A if there exists a neighborhood of x which

is contained in A.
We say that x is a closure point of A if for every neighborhood of x intersects

A.
We say that x is a boundary point of A if for every neighborhood of x intersects

both A and X r A.

Proposition II.16. Let (X, ρ) be a metric space. Let A ⊂ X and x ∈ X. Then
(a) x is an interior point of A if and only if x ∈ A◦;
(b) x is a closure point of A if and only if x ∈ A;
(c) x is a boundary point of A if and only if x ∈ ∂A.

Definition II.17. Let (X, ρ) be a metric space. Let A ⊂ X and let x ∈ X.
A deleted neighborhood of x is a subset V ⊂ X such that V = U r {x} for some

neighborhood U of x.
We say that x is an isolated point of A if every deleted neighborhood of x is

contained in X r A.
We say that x is an accumulation point of A if every deleted neighborhood of

x intersects A.

Proposition II.18. Let (X, ρ) be a metric space. Let A ⊂ X. Set

B = {x ∈ X | x is an isolated point of A};
C = {x ∈ X | x is an accumulation point of A}.

Then A = B ∪ C.



CHAPTER III

Completeness

Abstract. This chapter discusses sequences, subsequences, bounded se-

quences, and Cauchy sequences. In the process, the Bolzano-Weierstrass prop-
erty and the completeness property of metric spaces are discussed. We show

that these properties of a metric space carry over to products.

1. Sequences

Definition III.1. Let X be a set. A sequence in X is a function a : N → X. We
write an instead of a(n), and we write (an)n∈N or simply (an) to denote the entire
sequence.

One can think of a sequence as an ordered tuple with infinity many entries;
hence the notation.

Definition III.2. Let (X, ρ) be a metric space and let (an) be a sequence in X.
Let p ∈ X. We say that (an) converges to p, and write limn→∞ an = p, if

∀ε > 0 ∃N ∈ N | n ≥ N ⇒ ρ(an, p) < ε.

If (an) converges to p, we call p a limit point of (an).

Definition III.3. Let (X, ρ) be a metric space and let (an) be a sequence in X.
Let q ∈ X. We say that (an) clusters at q if

∀ε > 0 ∀N ∈ N ∃n ≥ N | ρ(an, q) < ε.

If (an) clusters at q, we call q a cluster point of (an).

Example III.4. Let X = R and ρ(x, y) = |x − y|. Then our new definitions
for convergence and clustering become identical to our previous definitions for this
particular case.

Exercise III.1. Let S1 be the unit circle together with the subspace metric inher-
ited from R2. Let (an) be the sequence in S1 defined by

an =
(

cos
2πn

6
, sin

2πn

6

)
.

Find the cluster points of (an).

13
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Exercise III.2. Let X be a set and define a metric ρ on X by

ρ(x, y) =

{
0 if x = y;
1 otherwise .

Let (an) be a sequence in X.
(a) Show that p ∈ X is a limit point of (an) if and only if

∃N ∈ N | n ≥ N ⇒ an = p.

(b) Show that q ∈ X is a cluster point of (an) if and only if

∀N ∈ N∃n ≥ N | an = q.

Definition III.5. Let (X, ρ) be a metric space and let (an) be a sequence from X.
For each N ∈ N, the N th tail of (an) is defined to be the set

{an | n ≥ N} = {x ∈ X | x = an for some n ≥ N}.

Proposition III.6. Let (X, ρ) be a metric space, (an) a sequence from X, and
p ∈ X. Then the following conditions are equivalent:
(L1) For every ε > 0 there exists N ∈ N such that n ≥ N ⇒ ρ(an, p) < ε.
(L2) For every neighborhood U of p there exists N ∈ N such that n ≥ N ⇒ an ∈ U .
(L3) Every neighborhood of p contains a tail of (an).
(L4) Every neighborhood of p contains an for all but finitely many n ∈ N.

Proof.
(L1 ⇒ L2) Suppose that for every ε > 0 there exists N ∈ N such that n ≥

N ⇒ ρ(an, p) < ε. Let U be a neighborhood of p. Then there exists ε > 0 such
that B(p, ε) ⊂ U . Let N be so large that ρ(an, p) < ε whenever n ≥ N . Then for
n ≥ N , we have an ∈ B(p, ε) ⊂ U .

(L2 ⇒ L3) Suppose that for every neighborhood U of p there exists N ∈ N
such that n ≥ N ⇒ an ∈ U . Let U be a neighborhood of p and let N be so large
that n ≥ N ⇒ an ∈ U . Then {an | n ≥ N} ⊂ U , so U contains the N th tail of
(an).

(L3 ⇒ L4) Suppose that every neighborhood U of p contains a tail of (an).
Let U be a neighborhood of p and let N ∈ N such that {an | n ≥ N} ⊂ U . If
an /∈ U for some n ∈ N, then an /∈ {an | n ≥ N}, so n < N . There are only finitely
many such n.

(L4⇒ L1) Suppose that every neighborhood of p contains an for all but finitely
many n. Let ε > 0. Then B(p, ε) is a neighborhood of p, so an ∈ B(p, ε) for all but
finitely many n ∈ N. Let N = 1 + max{n ∈ N | an /∈ B(p, ε)}. Then for n > N , we
have ρ(an, p) < ε. �
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Proposition III.7. Let (X, ρ) be a metric space, (an) a sequence from X, and
q ∈ X. Then the following conditions are equivalent:
(C1) For every ε > 0 and every N ∈ N there exists n ≥ N such that ρ(an, q) < ε.
(C2) For every neighborhood U of q and every N ∈ N there exists n ≥ N such that
an ∈ U .
(C3) Every neighborhood of q intersects every tail of (an).
(C4) Every neighborhood of q contains an for infinitely many n ∈ N.

Proof.
(C1 ⇒ C2) Suppose that for every ε > 0 and every N ∈ N there exists n ≥ N

such that ρ(an, q) < ε. Let U be a neighborhood of q and let N ∈ N. Then there
exists ε > 0 such that B(p, ε) ⊂ U ; thus there exists n ≥ N such that ρ(an, q) < ε.
But this says that an ∈ B(q, ε), so an ∈ U .

(C2 ⇒ C3) Suppose that for every neighborhood U of q and every N ∈ N
there exists n > N such that an ∈ U . Let U be a neighborhood of q and let
{an | n ≥ N} be an arbitrary tail of (an). Then for some n ≥ N , we have an ∈ U .
But an ∈ {an | n ≥ N}, so an ∈ {an | n ≥ N} ∩ U , and {an | n ≥ N} intersects U .

(C3 ⇒ C4) Suppose that every neighborhood of q intersects every tail of (an).
Let U be a neighborhood of q. Suppose bwoc that U contains an for only finitely
many n ∈ N. Let m be the largest natural number such that am ∈ U . Then
[an : m + 1] is a tail of (an) which does not intersect U ; this is a contradiction.

(C4 ⇒ C1) Suppose that every neighborhood of q contains an for infinitely
many n ∈ N. Let ε > 0 and N ∈ N. Then U = B(q, ε) is a neighborhood of q, and
U contains an for infinitely many n ∈ N. One such n must be larger than N ; if
n ∈ N such that an ∈ U , then ρ(an, q) < ε. �

Proposition III.8. Let (X, ρ) be a metric space, (an) a sequence from X, and
p ∈ X. If (an) converges to p, then (an) clusters at p, and p is the only cluster
point.

Proof. Suppose that (an) converges to p. Then every neighborhood of p contains
an for all but finitely many n. Thus there are infinitely many n such that an is in
the neighborhood. By Proposition III.7 (d), (an) clusters at p.

To see that p is the only cluster point, let q ∈ X, q 6= p; we show that (an)
does not cluster at q. Let ε = ρ(p,q)

2 and let U = B(p, ε) and V = B(q, ε). Then U
and V are disjoint neighborhoods of p and q respectively.

Let A be a tail of (an) such that A ⊂ U . Since U ∩V = ∅, we have A∩V = ∅,
so V is a neighborhood of q which does not intersect A. Thus (an) does not cluster
at q, by III.7 (c). �

Exercise III.3. Find an example of a sequence (an) of real numbers and a real
number q ∈ R such that (an) clusters at q but does not converge to q.

2. Subsequences

Definition III.9. Let (X, ρ) be a metric space and let (an) be a sequence in X,
where a : N → X is the function defining (an). A subsequence of (an) is the
composition a ◦ n of a with a strictly increasing sequence n : N → N of positive
integers. Let nk = n(k), and denote the subsequence by (ank

).
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Proposition III.10. Let (X, ρ) be a metric space and let (an) be a sequence in X,
Then q ∈ X is a cluster point of (an) if and only if (an) has a subsequence which
converges to q.

3. Bounded Sequences

Definition III.11. Let (X, ρ) be a metric space and let (an) be a sequence in X.
We say that (an) is bounded if the set {an | n ∈ N} is a bounded set.

Exercise III.4. Let (X, ρ) be a metric space and let (an) be a sequence in X.
Then (an) is bounded if and only if there exists a point c ∈ X and a positive real
number R > 0 such that ρ(an, c) ≤ R for all n ∈ N.

Definition III.12. Let (X, ρ) be a metric space. We say that X has the Bolzano-
Weierstrass property if every bounded sequence in X has a convergent subsequence.

Example III.13. We have already shown that R has the Bolzano-Weierstrass
property.

Proposition III.14. Let (X, ρ) be a metric space. Then X has the Bolzano-
Weierstrass property if and only if every sequence has a cluster point.

Proof. This follows immediately from Proposition III.10. �

Proposition III.15. Let (X, ρ) be a metric space. Then X has the Bolzano-
Weierstrass property if and only if every bounded infinite subset of X has an accu-
mulation point.

Proof. Suppose that X has the Bolzano-Weierstrass property. Then every bounded
sequence in X has a cluster point. Let A ⊂ X be a bounded infinite set. Since A
is infinite, there exists an injective function a : N → A. This produces a sequence
(an). This sequence is bounded, so it has a cluster point, say q ∈ X.

We claim that q is an accumulation point of A. To see this, let U be a neigh-
borhood of q. Since q is a cluster point, U contains an for infinitely many n. Since
a is injective, at an = q for at most one n. Thus U r {q} contains an for some n,
and an ∈ A. Thus U intersects A, and q is a cluster point.

Suppose that every bounded infinite subset of X has an accumulation point.
Let (an) be a sequence in A. Let B = {an | n ∈ N}. If B is finite, then there exists
b ∈ B such that b = an for infinitely many n. In this case, b is a cluster point
of A. On the other hand, if B is infinite, it has an accumulation point, and this
accumulation point will be a cluster point of (an). �
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4. Cauchy Sequences

Definition III.16. Let (X, ρ) be a metric space and let (an) be a sequence in X.
We say that (an) is a Cauchy sequence if

∀ε > 0∃N ∈ N | m,n ≥ N ⇒ ρ(am, an) < ε.

Definition III.17. Let (X, ρ) be a metric space. We say that X is complete if
every Cauchy sequence in X converges.

This definition of completeness appears different than the completeness axiom
which we use to obtain the reals from the rationals. We now relabel that definition.

Definition III.18. Let S be an ordered set. We say that S has the supremum
property if every subset of S which is bounded above has a least upper bound. We
say that S has the infimum property if every subset of S which is bounded below
has a greatest lower bound.

We have already shown that a sequence in R converges if and only if it is a
Cauchy sequence. We now show that for subsets of R, the supremum and infimum
properties are equivalent to the new completeness property; in this way, the new
definition is a generalization of the old one.

Proposition III.19. Let A ⊂ R. Then A is a complete metric subspace of R if
and only if A has the supremum and infimum properties.

Proof. Suppose that A is a complete metric subspace of R. Then every Cauchy
sequence in A converges to a point in A. Let B ⊂ A be bounded above; Then B
has a supremum in the reals, say x = supB. Then for each n ∈ N, there exists
bn ∈ B such that x − bn < 1

2n . Then for m < n, we have |bn − bm| 1
2n . Therefore

(bn) is a Cauchy sequence, which converges to a point in A. But clearly lim bn = a,
so supB = x ∈ A. Similarly, B has the infimum property.

On the other hand, suppose that A has the supremum and infimum properties,
and let (an) be a Cauchy sequence in A. Then (an) converges in R, say to x ∈ R. Let
un = inf{am | m ≥ n}. Since A has the infimum property, un ∈ A for every n ∈ N.
Also, (un) is an increasing sequence which converges to x, so x = sup{un | n ∈ N}.
Since A has the supremum property, this is also in A. Thus every Cauchy sequence
in A converges to a point in A. �

Proposition III.20. Let (X, ρ) be a metric space and let (an) be a Cauchy sequence
in X. Then (an) is bounded.

Proof. Since (an) is a Cauchy sequence, there exists N ∈ N such that m,n ≥ N
implies ρ(am, an) < 1. Let M = max{ρ(ai, aN ) | i < N} ∪ {1}. Then ρ(an, aN ) <
M for every n ∈ N. �
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Proposition III.21. Let (X, ρ) be a metric space and let (an) be a Cauchy sequence
in X. If (an) has a subsequence converging to p ∈ X, then (an) converges to p.

Proof. Suppose that (ank
) is a subsequence of (an) which converges to p ∈ X. Let

ε > 0, and let K be so large that k ≥ K implies that ρ(ank
, p) < ε

2 . Let M be
so large that m,n ≥ M implies ρ(am, an) < ε

2 . Let N = max{K, M}. Then for
n ≥ N , we have

ρ(an, p) ≤ ρ(an, aN ) + ρ(aN , p) <
ε

2
+

ε

2
= ε.

Therefore (an) converges to p. �

Proposition III.22. Let (X, ρ) be a metric space. If X has the Bolzano-
Weierstrass property, then X is complete.

Proof. Suppose that X has the Bolzano-Weierstrass property, and let (an) be a
Cauchy sequence. By Proposition III.20, (an) is bounded, and so has a convergent
subsequence. By Proposition III.21, (an) converges. Thus X is complete. �

We have seen that if a metric space has the Bolzano-Weierstrass property,
then it is complete. One may conjecture that these properties are equivalent. The
following counterexample shows this is not the case.

Example III.23. Let X be any set any consider the discrete metric on X such
that the distance between distinct points equals 1. In this space, Cauchy sequences
are eventually constant, and so they converge. Thus X is complete. However, every
sequence in X is bounded, so X has the Bolzano-Weierstrass property if and only
if X is finite.

Next we would like to show the following propositions.

Proposition III.24. A sequence converges in Rk if and only if each of the coor-
dinate sequences converges. A sequence is Cauchy in Rk if and only if each of the
coordinate sequences is Cauchy. The metric space Rk is complete.

Proposition III.25. Bolzano-Weierstrass Theorem
Every bounded sequence in Rk has a convergent subsequence.

Discussion. Proposition III.24 is a lemma for Proposition III.25, which is a gener-
alization of the Bolzano-Weierstruass Theorem which we have already shown for R
(the case k = 1). However, these propositions can be generalized even further, and
we postpone the proofs for this more general context, which we take up next. �

5. Product Space Sequences

Proposition III.26. Let (X1, ρ1), . . . , (Xk, ρk) be a finite collection of metric
spaces. Let X = ×k

i=1Xi, and let ρ : X × X → R be the product metric on X.
Then

(a) A sequence is bounded in X if and only if each of the coordinate sequences
is bounded.

(b) A sequence converges in X if and only if each of the coordinate sequences
converges.

(c) A sequence is Cauchy in X if and only if each of the coordinate sequences
is Cauchy.
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(d) The metric space X is complete if and only if each of the spaces Xi is
complete.

(e) The metric space X has the Bolzano-Weierstrass property if and only if
each of the spaces Xi has the Bolzano-Weierstrass property.

Preliminary Observation. Now suppose that x = (x1, . . . , xk) and y = (y1, . . . , yk)
are points in X, where xj , yj ∈ Xi. Observe that, since all metrics are positive, we
have

ρj(xj , yj) ≤

√√√√ k∑
i=1

ρ(xi, yi) = ρ(x, y) ≤
√

k max{ρ(xi, yi) | i = 1, . . . , k}.

�

Notation. A point in X is an k-tuple with entries for X1 through Xk. If we denote
these entries with subscripts, we must find another place to indicate the position
of such an k-tuple in a sequence. Thus let (x(n)) denote a sequence in X, where

x(n) = (x(n)
1 , . . . , x

(n)
k ),

where x
(n)
i ∈ Xi. �

Proof of (a). This follows from the observation. �

Proof of (b). Suppose that (x(n)
i ) converges for i = 1, . . . , k, say to Li ∈ Xi. Let

L = (L1, . . . , Lk). Let ε > 0. Let N be so large that ρi(x
(n)
i , L

(n)
i ) < 1

k ε2 for n ≥ N .
Then for n ≥ N we have

ρ(xn, L) =

√√√√ k∑
i=1

ρ(x(n)
i , Li) <

√√√√ k∑
i=1

1
k

ε2 =

√
k(

1
k

ε2) = ε.

Therefore lim x(n) = L, and in particular, (x(n)) converges.
Suppose that (x(n)) converges, say to L = (L1, . . . , Lk). Let ε > 0 and let n be

so large that ρ(x(n), L) < ε for n ≥ N . Then for i between 1 and k we have

ρi(x
(n)
i , Li) ≤ ρ(x(n), L) < ε.

Thus limn→∞ x
(n)
i = Li, and in particular, the sequence (x(n)

i ) converges. �

Proof of (c). Suppose that (x(n)
i ) is a Cauchy sequence for i = 1, . . . , k. Let ε > 0

and let N be so large that m,n ≥ N implies

ρi(x
(m)
i , x

(n)
i ) <

ε√
k

for all i = 1, . . . , k. Then by the observation, we have

ρ(x(m), x(n)) ≤ ε.

Suppose that (x(n)) is a Cauchy sequence. Let ε > 0. Let N be so large that
m,n ≥ N implies ρ(x(m), x(n)) < ε. Then for m,n ≥ N , we have

ρi(x
(m)
i , x

(n)
i ) ≤ ρ(x(m), x(n)) < ε,

we says that the coordinate sequence (x(n)
i ) is a Cauchy sequence. �
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Proof of (d). We know that a metric space is complete if and only if each of its
Cauchy sequences converges.

Suppose each space (Xi, ρi) is complete, and consider a Cauchy sequence in
X. Each of the coordinate sequences are Cauchy by part (b), so each converges
since Xi is complete. Then the original sequence converges by part (a), so X is
complete.

On the other hand, suppose that (X, ρ) is complete, and let i ∈ {1, . . . , k}.
Consider a Cauchy sequence in Xi. Construct a sequence in X by selecting a
constant ai ∈ Xi in every coordinate other than the ith. These are all Cauchy
sequences in the coordinate spaces, so the construct sequence in X converges. Thus
the original sequence in Xi converges, and Xi is complete. �

Proof of (e). Suppose that Xi has the Bolzano-Weierstrass property for i =
1, . . . , k. Then each bounded sequence in Xi has a convergent subsequence. Given
a bounded sequence in X, each of the coordinate sequences is bounded, and has
a convergent subsequence. Select a convergent subsequence X1 for the first coor-
dinate subsequence, and take the corresponding subsequence in X. Now select a
convergent subsequence in X2 for the second coordinate subsequence of the new
sequence in X, and again take the corresponding subsequence in X. Continue
this process k times, and arrive at a sequence in X such that every subsequence
converges. This sequence is a subsequence of the original sequence in X, and it
converges. Thus X has the Bolzano-Weierstrass property.

Suppose that X has the Bolzano-Weierstrass property. Let i ∈ {1, . . . , k} and
let consider a bounded sequence in Xi. Construct a sequence in X by selecting a
constant ai ∈ Xi in every coordinate other than the ith. This is bounded in X, and
so has a convergent subsequence. The ith coordinate sequence of this subsequence
converges in Xi, and is a subsequence of the original sequence in Xi. Thus Xi has
the Bolzano-Weierstrass property. �

Corollary III.27. The space Rk is complete and has the Bolzano-Weierstrass
property.
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Example III.28. Consider R∞, whose points are all infinite tuples of real numbers
with all but finitely many entries equal to zero. Construct a sequence (x(n)) in R∞
by setting

(†) x
(n)
i =

{
1 if i = n;
0 otherwise.

Then (x(n)) is bounded (it is completely contained inside the closed unit ball), yet
has no convergent subsequence. Thus R∞ does not have the Bolzano-Weierstrass
property. Note that the sequence above is not a Cauchy sequence.

However, consider this example. Construct a sequence (y(n)) in R∞ by setting

y
(n)
i =

{
1
2i if i ≤ n;
0 otherwise.

This is a Cauchy sequence in R∞ which does not converge in R∞. So this space is
not complete.

Example III.29. Let `2 be the space of sequences (xn) in R with the convergence
criterion

∑∞
i=1 x2

i < 0. Then R∞ is a subspace of `2, and the sequence (†) from
Example III.28 does not have a convergent subsequence in `2.

However, `2 is complete. To show this, proceed as follows. Consider a Cauchy
sequence (x(n)

i ) in `2. Show that the coordinate sequences are Cauchy, and so the
converge in R; say that (x(n)

i ) converges to xi for each i. Next see that the sequence
(xi) is in `2.

Clearly there is some relationship between the Bolzano-Weierstrass property
and completeness. We need the concept of compactness to illuminate this further.





CHAPTER IV

Continuity

1. Continuous Functions

1.1. Continuity at a Point.

Definition IV.1. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. We say that f is continuous at a if

∀ε > 0 ∃δ > 0 | ρ(x, a) < δ ⇒ τ(f(x), f(a)) < ε.

Example IV.2. Let f : R → R be given by f(x) = 3x − 7 and let a ∈ R. Show
that f is continuous at a.

Solution. Let ε > 0 and let δ = ε
3 . Then

|x−a| < δ ⇒ |x−a| < ε

3
⇒ |3x−3a| < ε ⇒ |3x−7−(3a−7)| < ε ⇒ |f(x)−f(a)| < ε.

�

1.2. Sequential Continuity at a Point.

Definition IV.3. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. We say that f is sequentially continuous at a if for every sequence (xn) in
X converging to a, the sequence (f(xn)) in Y converges to f(a).

Proposition IV.4. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. Then f is continuous at a if and only if f is sequentially continuous at a.

Proof. We prove both directions of this implication.
(⇒) Suppose that f is continuous at a. Let (xn) be a sequence in X which

converges to a; we wish to show that (xn) converges to f(a). Let ε > 0. Since f is
continuous at a, there exists δ > 0 such that ρ(x, a) < δ implies τ(f(x), f(a)) < ε.
Let N be so large that n ≥ N implies ρ(x, a) < δ. Then, for n ≥ N , we have
τ(f(x), f(a)) < ε.

(⇐) Suppose that f is not continuous at a. Then

∃ε > 0 | ∀δ > 0 ∃x ∈ X, ρ(x, a) < δ | τ(f(x), f(a)) ≥ ε.

Let ε satisfy the above condition, and for n ∈ N, let xn ∈ X be such that ρ(x, a) < 1
n ,

but τ(f(xn), f(a)) ≥ ε. Then (xn) converges to a, but f(xn) does not converge to
f(a). Therefore, f is not sequentially continuous at a. �

23
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1.3. Topological Continuity at a Point.

Definition IV.5. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. We say that f is topologically continuous at a if for every open neighborhood
V of f(a) there exists an open neighborhood U of a such that f(U) ⊂ V .

Observation IV.1. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. The following conditions are equivalent:

(a) ρ(x, a) < δ ⇒ τ(f(x), f(a)) < ε;
(b) x ∈ B(a, δ) ⇒ f(x) ∈ B(f(a), ε);
(c) f(B(a, δ)) ⊂ B(f(a), ε).

Proposition IV.6. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
a ∈ X. Then f is continuous at a if and only if f is topologically continuous at a.

Proof. We prove both directions.
(⇒) Suppose that f is continuous at a, and let V be an open neighborhood of

f(a). Then there exists ε > 0 such that B(f(a), ε) ⊂ V . Since f is continuous, there
exists δ > 0 such that f(B(a, δ) ⊂ B(f(a), ε). Let U = B(a, δ); then f(U) ⊂ V .

(⇐) Suppose that f is topologically continuous at a. Let ε > 0 and let V =
B(f(a), ε). Then V is an open neighborhood of f(a) in Y , so there exists an open
neighborhood U of a in X such that f(U) ⊂ V . Since U is open and a ∈ U , there
exists δ > 0 such that B(a, δ) ⊂ U . Then f(B(a, δ)) ⊂ B(f(a), ε). �

1.4. Continuity on a Space.

Definition IV.7. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y and let
A ∈ X. We say that f is continuous on A if f is continuous at a for every a ∈ A.
If f is continuous on X, we say simply that f is continuous.

Example IV.8. Let f(x) = 3x−2
x2−7x+10 . The natural real domain of this function is

X = R r {2, 5}. Thus f : X → R, and f is continuous. In fact, rational functions
are always continuous on their domains.

Definition IV.9. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y . We say
that f is topologically continuous if for every open set V in Y , f−1(V ) is open in
X.

Proposition IV.10. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y . Then
f is continuous if and only if f is topologically continuous.

Proof. We prove both directions.
(⇒) Suppose that f is continuous, and let V ⊂ Y be open. Let U = f−1(V ),

and let u ∈ U . We wish to show that their is an open neighborhood of u contained
in U . Since V is open, there exists ε > 0 such that B(f(u), ε) ⊂ V . Since f is
continuous, there exists δ > 0 such that ρ(x, u) < δ implies τ(f(x), f(u)) < ε, that
is, x ∈ B(u, δ) implies that f(x) ∈ B(f(u), ε) ⊂ V , so that f(B(u, δ)) ⊂ V . Thus
B(u, δ) ⊂ U , so U is open. Therefore f is topologically continuous.

(⇐) Suppose that f is topologically continuous. Let a ∈ X and let ε > 0. Let
V = B(f(a), ε); then V is open in Y , so UY = f−1(V ) is open in X. Clearly a ∈ U ;
thus there exists δ > 0 such that B(a, δ) ⊂ U , and f(B(a, δ)) ⊂ B(f(a), ε). This
says that ρ(x, a) < δ implies τ(f(x), f(a)) < ε. �
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1.5. Composition of Continuous Functions.

Proposition IV.11. Let (X, ρ), (Y, τ), and (Z, χ) be metric spaces. Let f : X → Y
be continuous at a ∈ X and let g : Y → Z be continuous at f(a) ∈ Y . Then g ◦ f
is continuous at a.

Proof. Let W be an open neighborhood of g(f(a)). Since g is continuous, there
exists an open neighborhood V of f(a) such that g(V ) ⊂ W . Also, since f is
continuous, there exists an open neighborhood U of a such that f(U) ⊂ V . Then
g(f(U)) ⊂ g(V ) ⊂ W . �

1.6. Real-Valued Functions.

Proposition IV.12. Let (X, ρ) be a metric space, and let f : X → R be a real-
valued function defined on X. Let Y = {x ∈ X | g(x) 6= 0} and let k ∈ R. Define
new functions as follows:

• |f | : X → R is defined by |f |(x) = |f(x)|.
• kf : X → R is defined by (kf)(x) = kf(x);
• 1

f : Y → R is defined by ( 1
f )(x) = 1

f(x) ;

If f is continuous at a, then kf and moduf are continuous at a. If a ∈ Y , then 1
f

is continuous at a.

Proof. We show, for example, that kf is continuous at a ∈ X. Let (xn) be a
sequence in X that converges to a. Then lim kf(xn) = k lim f(xn) = kf(a). This
shows that kf is continuous at a. �

Proposition IV.13. Let (X, ρ) be a metric space, and let f : X → R and g : X →
R be real-valued functions defined on X. Define new functions as follows:

• f + g : X → R is defined by (f + g)(x) = f(x) + g(x);
• fg : X → R is defined by (fg)(x) = f(x) · g(x);
• max(f, g) : X → R is defined by max(f, g)(x) = max{f(x), g(x)};
• min(f, g) : X → R is defined by min(f, g)(x) = min{f(x), g(x)};

If f and g are continuous at a, then the above functions are continuous at a (except
when dividing by zero).

Proof. We show, for example, that f + g is continuous at a ∈ X. Let (xn) be a
sequence in X that converges to a. Then lim(f + g)(xn) = lim(f(xn) + g(xn)) =
lim f(xn)+lim g(xn) = f(a)+g(a) = (f +g)(a). This shows that f +g is continuous
at a. �

2. Continuity Examples for f : R → R

Example IV.14. Let f : R → R be given by f(x) = x2. Let x0 = 2. Show that f
is continuous at x0.

Proof. Let ε > 0; we may assume that ε < 4. Let δ =
√

x2
0 + ε− x0 =

√
4 + ε− 2.

Thus (δ + 2)2 = 4 + ε, so ε = δ2 + 4δ.
Suppose that x ∈ (2− δ, 2 + δ). Then x + 2 < δ + 4, and

|f(x)− f(x0)| = |x2 − 4| = |x− 2|(x + 2) < δ(4 + δ) = ε.

�

Example IV.15. Let f : R → R be given by f(x) = x3. Show that f is continuous.
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Proof. Let x0 ∈ R and let ε > 0. We wish to find δ > 0 such that if |x − x0| < δ,
then |f(x)− f(x0)| < ε.

For simplicity, assume that x0 > 0. Let δ = 3
√

x3
0 + ε− x0. Solving for ε yields

ε = (x0 + δ)3 − x3
0.

Let x ∈ (x0 − δ, x0 + δ). Then x > 0, and

|f(x)− f(x0)| = |x3 − x3
0|

= |x− x0|(x2 + x0x + x2
0)

< δ((x0 + δ)2 + x0(x0 + δ) + x2
0)

= δ(x2
0 + 2x0δ + δ2 + x2

0 + x0δ + x2
0)

= δ(3x2
0 + 3x0δ + δ2)

= ε.

�

Example IV.16. Let f : [0,∞) → R be given by f(x) =
√

x. Show that f is
continuous.

Motivation. Graph the curve f(x) =
√

x. Select arbitrary x0 ∈ dom(f). Project
up and to the right to find the point

√
x0 on the y-axis. Draw an ε-band around

this point. Project the intersection of this band with the graph of f onto the x-axis.
Notice that the point on the left of this projection is closer to x0 than is the point
on the right. Let δ be one half of the distance between x0 and the left endpoint of
the inverse image of [f(x0)− ε, f(x0) + ε]. �

Proof. Let x0 ∈ [0,∞) and let ε > 0; wlog assume that ε2 ≤ x0. If x0 = 0, let
δ = ε2; clearly this will work. Otherwise set

δ =
1
2
(x0 − (

√
x0 − ε)2);

this is positive. Note that for x ∈ R, |x − x0| = |
√

x − √x0|(
√

x +
√

x0). Then if
|x− x0| < δ, we have

|
√

x−
√

x0| <
δ√

x +
√

x0

=
x0 − (x0 − 2

√
x0ε + ε2)

2(
√

x +
√

x0)

=
ε(2
√

x0 − ε)
2(
√

x +
√

x0)

< ε
(2
√

x0 − ε)
2
√

x0

= ε

(
1− ε

2
√

x0

)
< ε.

�
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Example IV.17. Show that every polynomial function is continuous.

Proof. This is tedious but obviously important. We build it gradually.
Claim 1: The constant function f(x) = C, where C ∈ R, is continuous.

Let x0 ∈ R and let ε > 0. Set δ = 1. Then if |x−x0| < δ, we have |f(x)− f(x0)| =
0 < ε. Thus f is continuous in this case.

Claim 2: The identity function f(x) = x is continuous.
Let x0 ∈ R and let ε > 0. Set δ = ε. Then if |x− x0| < δ, we have |f(x)− f(x0)| =
|x− x0| < δ = ε, so f is continuous in this case.

Claim 3: The function f(x) = xn is continuous.
By induction on n. For n = 1, the function g(x) = x is the identity function, and so
it is continuous. By induction, h(x) = xn−1 is continuous. Then by the Continuous
Arithmetic Proposition, f = gh is continuous in this case.

Claim 4: The monomial function f(x) = anxn is continuous, where an ∈ R is
constant.
By Claim 1, g(x) = an is continuous, and by Claim 3, h(x) = xn is continuous, so
there product f = gh is continuous.

Claim 5: The polynomial function f(x) = a0 +a1x+ · · ·+anxn is continuous.
By induction on n, the degree of the polynomial.

For n = 0, f(x) is constant and therefore continuous.
Assume that g(x) = a0 + · · · + an−1x

n−1 is continuous. By Claim 4, h(x) =
anxn is continuous. Then f = g + h is continuous by the Continuous Arithmetic
Proposition. �

Example IV.18. Show that every rational function is continuous.

Proof. Let f be a rational function. Then f(x) = p(x)/q(x), where p and q are
polynomial functions. Since p and q are continuous, then f is continuous on its
domain by a Proposition from the arithmetic of continuous functions. �

Example IV.19. Let f : R → R be given by

f(x) =

{
1 if x is rational
0 if x is irrational

Show that f is discontinuous at every real number.

Proof. Let x0 ∈ R. To show that f is discontinuous at x0, it suffices to find ε > 0
such that for every δ > 0, there exists x ∈ (x0 − δ, x0 + δ) with |f(x)− f(x0)| ≥ ε.

Let ε = 1
2 and let δ > 0. Then there exists both a rational and an irrational

in (x0 − δ, x0 + δ). If x0 is rational, let x1 be an irrational in this interval, and we
have |f(x1)− f(x0)| = 1 > ε; if x0 is irrational, let x2 be a rational in this interval,
and we still have |f(x2)− f(x0)| = 1 > ε. Thus f is not continuous at x0. �

Example IV.20. Let f : R → R be given by

f(x) =

{
x if x is rational
0 if x is irrational

Show that f is continuous at x = 0 and discontinuous at all nonzero real numbers.

Proof. Let x0 ∈ R r {0}; we show that f is discontinuous at x0. Let ε = |x0|
2 and

let δ > 0. Then there exists both a rational and an irrational in (x0 − δ, x0 + δ). If
x0 is rational, let x1 be an irrational in this interval, and we have |f(x1)− f(x0)| =
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|x0| > ε. If x0 is irrational, let x2 be a rational in this interval such that |x2| > |x0|
and we still have |f(x2)− f(x0)| = |x2| > |x0| > ε. Thus f is not continuous at x0.

Now we consider the behavior of f at zero. Let ε > 0 and let δ = ε. Then if
|x−0| < δ, we have |f(x)− f(0)| = 0 if x is irrational and |f(x)− f(0)| = |x| if x is
rational; in either case, |f(x)− f(0)| ≤ |x| < δ = ε, so f is continuous at zero. �

Example IV.21. If r ∈ Q, there exists p ∈ Z and q ∈ N such that r = p
q . Define

q : Q → R by
q(r) = min{q ∈ N | r =

p

q
for some p ∈ Z}.

Define f : R → R by

f(x) =

{
0 if x is irrational

1
q(x) if x is rational

Show that f is discontinuous at every rational and continuous at every irrational.

Proof. Suppose that x0 is rational. We wish to show that f is not continuous at x0.
It suffices to find ε > 0 such that for every δ > 0 there exists x1 ∈ (x0 − δ, x0 + δ)
with |x0 − x1| > ε.

Since x0 is rational, we have x0 = p
q(x0)

for some p ∈ Z. Let ε = 1
2q(x0)

and let
δ > 0. Then (x0−δ, x0+δ) contains an irrational number, say x1; then |x0−x1| < δ
but |f(x0)− f(x1)| = 1

q(r) > ε. Thus f cannot be continuous at x0.
Suppose that x0 is irrational. Let ε > 0. It suffices to find δ > 0 such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.
Let N ∈ N be so large that 1

N < ε. Let a be the greatest integer which is less
than x0 and b be the least integer which is greater than x0; then b = a + 1 and
x0 ∈ [a, b].

For q ∈ Q, there exist only finitely many points in the set [a, b] ∩ {k
q | k ∈ Z}

(in fact, this set contains no more than q points). Thus the set

D = [a, b] ∩ {k

q
| k ∈ Z, q ≤ N}

is finite (there are no more than N(N+1)
2 points in this set). Let

δ = min{|x0 − d| | d ∈ D};
since this set is a finite set of positive real numbers, the minimum exists as a
positive real number. Then (x0 − δ, x0 + δ) ⊂ [a, b]. Let x ∈ (x0 − δ, x0 + δ).
If x is irrational, we have |f(x) − f(x0)| = 0 < ε, and if x is rational, we have
|f(x)− f(x0)| = 1

q(x) < 1
N < ε. Thus f is continuous at x0. �
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3. Isometries,Contractions, and Homeomorphisms

3.1. Isometries.

Definition IV.22. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y . We
say that f preserves distance if

τ(f(a), f(b)) = ρ(a, b).

A bijective function which preserves distance is called an isometry.
An injective function which preserves distance is called an isometric embedding.

Proposition IV.23. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y which
preserves distance. Then f is an isometric embedding.

Proof. We only have to show that f is injective. Let a, b ∈ X such that f(a) = f(b).
Then ρ(a, b) = τ(f(a), f(b)) = 0, so by property (M1) of a metric, a = b. Thus f
is injective. �

Example IV.24. Let f : R → R be an isometry. Then f(x) = ux + b for some
b ∈ R, where u = ±1.

Proof. Let b = f(0). Now let x ∈ R and let y = f(x). Now x = |x − 0| =
|f(x)− f(0)| = |y− b|, so x = ±(y− b); thus y = ux + b, where u = ±1. It remains
to show that u is independent of x.

Thus assume that f(x1) = x1 + b and f(x2) = −x2 + b; it suffices to show that
x1 = 0 or x2 = 0. Now |x1−x2| = |f(x1)−f(x2)| = |x1 +b− (−x2 +b)| = |x1 +x2|.
Squaring both sides and cancelling yields −x1x2 = x1x2, so either x1 = 0 or
x2 = 0. �

Example IV.25. Let f : R2 → R2 be an isometry. Then exactly one of these
conditions hold:

(1) there exists a line y = mx + b such that f is reflection across this line;
(2) there exists a point (x0, y0) and an angle α such that f is rotation by α

around (x0, y0).

Exercise IV.1. Describe the isometries of R3.

Exercise IV.2. Let X = {(cos α, sinα) ∈ R2 | α = 2π
n for some n ∈ Z}. Describe

the isometries of X.

3.2. Contractions.

Definition IV.26. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y . We
say that f is a contraction if there exists M > 0 such that

τ(f(a), f(b)) ≤ Mρ(a, b)

for all a, b ∈ X.

Example IV.27. An isometric embedding is a contraction.

Proposition IV.28. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y be a
contraction. Then f is continuous.
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Proof. Since f is a contraction, there exists M > 0 such that τ(f(a), f(b)) ≤
Mρ(a, b) for every a, b ∈ X.

Let a ∈ X and let ε > 0. Let δ = ε
M . Then

ρ(a, b) < δ ⇒ ρ(a, b) <
ε

M
⇒ Mρ(a, b) < ε ⇒ τ(f(a), f(b)) < ε.

�

3.3. Homeomorphisms.

Definition IV.29. Let (X, ρ) and (Y, τ) be metric spaces. Let f : X → Y . We
say that f is a homeomorphism if f is a continous bijective function whose inverse
is also bijective.

It is natural to suppose that a continuous bijective function always has a con-
tinuous inverse. This is not the case.

Example IV.30. Let X = (0, 1) ∪ [2, 3) and let Y = (0, 2). Define f : X → Y by

f(x) =

{
x if x ∈ (0, 1);
x− 1 if x ∈ [2, 3).

This function is clearly bijective and continuous at every point in X; however, its
inverse is discontinuous.

Example IV.31. Let X = R. Let ρ be the standard metric on X and let τ be
the discrete metric. Then id : (X, τ) → (X, ρ) is bijective and continuous, but the
inverse is not continuous.

Example IV.32. Let X = (−π
2 , π

2 ) and Y = R, endowed with the usual metric.
Let f : X → Y be given by f(x) = tanx. Then f is bijective and continuous, and
its inverse is f−1(x) = arctanx. Thus a homeomorphism can map a bounded space
onto an unbounded space.

Example IV.33. Let (X, ρ) be a metric space, and define

ρ̂ : X ×X → R by ρ̂(x, y) =
ρ(x, y)

1 + ρ(x, y)
.

We have seen that (X, ρ̂) is a metric space. View the identity map idX : X → X
as a function from (X, ρ) to (X, ρ̂). Then idX is a bijective contraction, and its
inverse is also continuous. Thus idX is a homeomorphism.

Definition IV.34. Let X be a set and let ρ and τ be metrics on X. We say that
ρ and τ are equivalent if they produce the same open sets.

Definition IV.35. Let (X, ρ) be a metric space. The topology induced by ρ on X
is

T(X,ρ) = {U ⊂ X | U is open in X}.
Proposition IV.36. Let X be a set and let ρ and τ be metrics on X. The following
conditions are equivalent:

(a) id : (X, ρ) → (X, τ) is a homeomorphism;
(b) T(X,ρ) = T(X,τ);
(c) every open ball with respect to one metric contains an open ball with respect

to the other metric.
If any of these conditions hold, we say that the metrics ρ and τ are equivalent.
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4. Projections and Injections

4.1. Open Maps.

Definition IV.37. Let (X, ρ) and (Y, τ) be metric spaces, and let f : X → Y be
a function.

We say that f is an open map if for every open set U in X, f(U) is open in Y .

Example IV.38. Let (X, ρ) be any metric space, and let (Y, τ) be a discrete metric
space. Then every function f : (X, ρ) → (Y, τ) is an open map.

Example IV.39. The function sin : R → R is a continuous function which sends
the open set (0, 4π) to the closed interval [0, 1]. Thus sin is not an open map.

Example IV.40. Let S1 denote the unit circle in the Euclidean plane, endowed
with the subspace metric. The function f : R → S1 given by f(θ) = (cos θ, sin θ) is
an open continuous map which is not a homeomorphism.

4.2. Projection.

Definition IV.41. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X = ×k
i=1Xi,

endowed with the product metric. Let j ∈ {1, . . . , k}.
The ith projection map is the function

pj : X → Xj given by pj(x1, . . . , xj−1, xj , xj+1, . . . , xk) = xj .

Proposition IV.42. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X =
×k

i=1Xi, endowed with the product metric ρ. Let j ∈ {1, . . . , k}. Let a =
(a1, . . . , aj , . . . , ak) ∈ X. Then pj(B(a, δ)) = B(aj , δ).

Proof. We show containment in both directions.
(⊂) Let xj ∈ pj(B(a, δ)); then xj = pj(x) for some x = (x1, . . . , xi−1, xj , xi+1, . . . , xk)
with x ∈ B(a, δ); that is, ρ(x, a) < δ. Now

ρj(aj , xj) ≤

√√√√ k∑
i=1

ρi(xi, ai)2 = ρ(a, x) < δ.

So xj ∈ B(aj , δ).
(⊃) Let xj ∈ B(aj , δ), and set x = (a1, . . . , ai−1, xj , ai+1, . . . , ak). One sees that

ρ(a, x) =
√

ρj(aj , xj)2 = ρj(aj , xj) < δ.

Thus x ∈ B(a, δ), so xj = pj(x) ∈ pj(B(a, δ)). �

Proposition IV.43. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X = ×k
i=1Xi,

endowed with the product metric ρ. Let j ∈ {1, . . . , k}. Then pj : X → Xj is a
continuous open map.

Proof. Let a = (a1, . . . , aj , . . . , ak) ∈ X, so that pj(a) = aj . Let ε > 0, and let
δ = ε. Then pj(B(a, δ)) ⊂ B(aj , ε) = B(pj(a), ε). Thus pj is continuous at a.

Now suppose that U is open in X, and let aj ∈ pj(U). Then aj = pj(a) for
some a = (a1, . . . , aj , . . . , ak) ∈ U . Since U is open, there exists δ > 0 such that
B(a, δ) ⊂ U . By the previous proposition, B(aj , δ) = pj(B(a, δ)) ⊂ pj(U). Thus
pj(U) is open. �
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4.3. Injection.

Definition IV.44. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X = ×k
i=1Xi,

endowed with the product metric. Let j ∈ {1, . . . , k}, and select a point a =
(a1, . . . , ak) ∈ X.

The jth injection map with respect to a is the function

qj : Xj → X given by qj(xj) = (a1, . . . , aj−1, xj , aj+1, . . . , ak).

Proposition IV.45. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X = ×k
i=1Xi,

endowed with the product metric. Let j ∈ {1, . . . , k}, and select a point a =
(a1, . . . , ak) ∈ X. Let pj be projection and qi be injection with respect to a. Then
pj ◦ qj = idXj .

Proof. This is clear. �

Proposition IV.46. Let (X1, ρ1), . . . , (Xk, ρk) be metric spaces. Let X = ×k
i=1Xi,

endowed with the product metric. Let i ∈ {1, . . . , k}, and select a point a =
(a1, . . . , ak) ∈ X. Then qi : Xi → X is a continuous function.

Proof. Let a = (a1, . . . , ak) ∈ X; then qj(aj) = a. , and ρ(x, a) = ρj(xj , aj). Let
ε > 0, and set δ = ε. Let xj ∈ B(aj , δ), and let x = ρj(xj). Then ρ(x, a) =
ρj(xj , aj), so

ρ(x, a) = ρj(xj , aj) < δ = ε,

which shows that qj is continuous at a. �

Exercise IV.3. Show that projection is a contraction.

Exercise IV.4. Show that injection is an isometric embedding.

Definition IV.47. Closed map.

Exercise IV.5. Show that injection is a closed map.



CHAPTER V

Compactness

Abstract. This chapter discusses the concept of compactness. We prove

the Heine-Borel Theorem for R, and show that the Heine-Borel property is
inherited for finite products of metric spaces.

1. Compactness

Definition V.1. Let (X, ρ) be a metric space and let A ⊂ X.
A cover of A is a collection of subsets C ⊂ P(X) such that A ⊂ ∪C.
Let C be a cover of A. We say that C is a finite cover if A is a finite set. We

say that C is an open cover if the elements of C are open sets. A subcover of C is a
subset D ⊂ C such that D is itself a cover of A.

We say that A is compact if every open cover of A has a finite subcover.

Remark V.1. Notice that in the phrase “finite open cover”, the word “finite” applies
to the cover itself, whereas the word “open” applies to the subsets of X in the cover.

Example V.2. Let X = R and A = Z. Let In = (n− 1
3 , n + 1

3 ). Let C = {In | n ∈
Z}. Then C is an open cover of Z with no finite subcover. Thus Z is not compact.

Example V.3. Let X = R and A = (0, 1). Let In = (0, 1− 1
n ). Let C = {In | n ∈

N}. Then C is an open cover of (0, 1) with no finite subcover. Thus (0, 1) is not
compact.

Proposition V.4. Let (X, ρ) be a metric space and let A = {a1, . . . , an} ⊂ X be
a finite subset. Then A is compact.

Proof. Let C be an open cover of A. Then for each ai ∈ A, there exists and open set
Ui ∈ C such that ai ∈ Ui. Then A ⊂ ∪n

i=1Ui, and {U1, . . . , Un} is a finite subcover
of C. Thus A is compact. �

33
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Proposition V.5. Let a, b ∈ R with a < b. Then the closed interval [a, b] ⊂ R is
compact.

Proof. Let C be an open cover of [a, b].
Let x ∈ [a, b] and let Ux ∈ C be an open set which contains x. Then there exists

εx > 0 such that (x− εx, x + εx) ⊂ Ux. Let

B = {x ∈ [a, b] | [a, x] can be covered by a finite subcover of C}.
Note that B is nonempty, since the closed interval [a, a + εa

2 ] ⊂ Ua, and {Ua} is a
finite subcover of C, so for example a + εa

2 ∈ B.
Let z = supB; clearly a + εa

2 ≤ z ≤ b. We claim that z ∈ B, and that z = b.
To see this, let ε = min{εz, z − a}. Then z − ε

2 ∈ B. Let D be a finite subcover of
C which covers [a, z − ε

2 ], and let E = D ∪ {Uz}. Then E is finite and covers [a, z],
so z ∈ B.

Now suppose that z < b, and set δ = min{ε, z − b}. Then z < z + δ
2 < b, and

E covers [a, z + δ
2 ]; since z + δ

2 ∈ [a, b], this contradicts the definition of z. Thus
z = b. This completes the proof. �
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2. Properties of Compactness

The first proposition says that all compact subsets of a metric space are closed
and bounded.

Proposition V.6. Let (X, ρ) be a metric space, and let K ⊂ X be a compact set.
Then K is closed and bounded.

Proof. Suppose that K is not bounded, and let a ∈ K. Let

C = {B(a, n) | n ∈ N}.
This is a cover of K by open sets (it actually covers all of X). However, since K
is unbounded, K is not contained in B(a, n) for any n ∈ N. Thus C has no finite
subcover, and K is not compact.

Let δ > 0 and let b ∈ X. Let D(b, δ) = {x ∈ X | ρ(x, b) ≤ δ}. We claim that
this set is closed; to see this, note that if a ∈ X r D(b, δ), then B(a, ρ(a, b) = δ) ⊂
X r D(b, δ).

Suppose that K is compact; we wish to show that K is closed. Thus we show
that the complement of K is open. Let b ∈ X r K, and set

C = {X r D(b,
1
n

) | n ∈ N}.

Then C is an open cover of K (in fact, it covers X r {b}). Thus it has a finite
subcover D. Let n be the largest number such that X r D(b, 1

n ) is in D. Then
clearly K ⊂ X r D(b, 1

n ), so B(b, 1
n ) ⊂ X r K. Thus X r K is open, so K is

closed. �

The next proposition says the a closed subset of a compact set is compact.

Proposition V.7. Let (X, ρ) be a metric space, and let K ⊂ X be a compact set.
Let F ⊂ K. If F is closed, then F is compact.

Proof. Suppose F is closed. Then U = X r F is open. Let C be an open cover of
F . Then C∪{U} is an open cover of K, and so it has a finite subcover, say D. Let
E = D r {U}. Now E is a finite subcover of C. �

The next proposition says that the continuous image of a compact set is com-
pact.

Proposition V.8. Let (X, ρ) and (Y, τ) be metric spaces, and let f : X → Y be a
continuous function. If K ⊂ X is compact, then f(K) is compact.

Proof. Let V be an open cover of f(K), and set

U = {U ⊂ X | U = f−1(V ) for some V ∈ V}.
Since f is continuous, U is a collection of open sets which covers K. Thus U has a
finite subcover, say {U1, . . . , Un}. Now for i = 1, . . . , n, we have Ui ∈ U, so Ui is
the preimage of some set Vi ∈ V, so that Vi = f(Ui). Then

K ⊂ ∪n
i=1Ui ⇒ f(K) ⊂ f(∪n

i=1Ui) = ∪n
i=1f(Ui) = ∪n

i=1Vi.

Thus {V1, . . . , Vn} is a finite subcover of V, and f(K) is compact. �
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3. Heine-Borel Theorem

Theorem V.9 (Heine-Borel Theorem for R). Let A ⊂ R. Then A is compact if
and only if A is closed and bounded.

Proof. The forward direction is true in any metric space, as has been stated as
Proposition V.6. Thus we prove that in R, closed and bounded sets are compact.

Suppose that A is closed and bounded; we wish to show that A is compact.
Since A is bounded, there exists M > 0 such that A ⊂ [−M,M ]. The set [−M,M ]
is a closed interval, and so it is compact by Proposition V.5. Thus A is a closed
subset of a compact set, and therefore is compact by Proposition V.7. �

Proposition V.10. Let K ⊂ R be a compact. Then inf K ∈ K and supK ∈ K.

Proof. Since K is bounded, then supK exists as a real number, say b = supK.
Suppose b /∈ K; then {(−∞, b − 1

n ) | n ∈ N} is an open cover of K with no finite
subcover, contradicting that K is compact. Thus b ∈ K. Similarly, inf K ∈ K. �

Definition V.11. Let (X, ρ) be a metric space. We say that X has the Heine-Borel
property if every closed and bounded subset of X is compact.

Recall these facts:
(a) Projection is continuous;
(b) Projection is an open map;
(c) Projection is a contraction;
(d) Injection is continuous;
(e) Injection is a closed map;
(f) Injection is an isometric embedding.

Proposition V.12. The finite product of compact sets is compact.

Proposition V.13. Let (X1, ρ1), . . . , (Xk, ρk) be a finite collection of metric
spaces. Let X = ×k

i=1Xi, and let ρ : X × X → R be the product metric on X.
Then X has the Heine-Borel property if and only if if and only if each of the spaces
Xi has the Heine-Borel property.

Proof. Suppose that X has the Heine-Borel property, and let Ki ⊂ Xi be closed and
bounded. Then ιi(Ki) is closed and bounded, and so ιi(Ki) is compact. Therefore
πi(ιi(Ki)) = K is compact, so Xi has the Heine-Borel property.

Suppose that Xi has the Heine-Borel property for i = 1, . . . , k, and let K ⊂ X
which is closed and bounded.

Then Ki = πi(K) is closed and bounded for each i. Thus Ki is compact, so
×k

i=1Xi is compact by Proposition V.12. Since K is a closed subset of ×k
i=1Xi, K

is compact by Proposition V.8. Thus X has the Heine-Borel property. �



CHAPTER VI

Connectedness

Abstract. This chapter discusses the concept of connectedness and its how

we may use it to prove the Intermediate Value Theorem.

1. Connectedness

Definition VI.1. Let (X, ρ) be a metric space and let A ⊂ X. We say that A
is disconnected if there exist disjoint open sets U1 and U2 such that A ∩ U1 6= ∅,
A∩U2 6= ∅, and A ⊂ U1 ∪U2. We say that A is connected if it is not disconnected.

Observation VI.1. Let I ⊂ R. Then I is an interval if and only if
• if x1, x2 ∈ I and x1 < z < x2, then z ∈ I.

Proposition VI.2. Let A ⊂ R. Then A is connected if and only if A is an interval.

Proof. We prove the contrapositive of each implication.
(⇒) Suppose that A is not an interval. Then there exist x1, x2 ∈ A and z /∈ A

such that x1 < z < x2. If U1 = (−∞, z) and U2 = (z,∞), then x1 ∈ U1, x2 ∈ U2,
and A ⊂ U1 ∩ U2. Thus A is not connected.

(⇐) Suppose that A is not connected. Then there exist disjoint open sets
U1, U2 ⊂ R such that A ∩ U1 6= ∅, A ∩ U2 6= ∅, and A ⊂ U1 ∪ U2. Let x1 ∈ A ∩ U1

and x2 ∈ A∩U2. Without loss of generality, assume that x1 < x2. Let z = inf{u ∈
U2 | u > x1}; then x1 ≤ z ≤ x2.

Suppose z ∈ U1; then a neighborhood of z is contained in U1. But since z is the
infimum of a subset of U2, every neighborhood of z intersects U2. This contradicts
that U1 ∩ U2 = ∅. Thus z /∈ U1. In particular, x1 < z.

Suppose that z ∈ U2; then a neighborhood of z is contained in U2, so there
exists y ∈ U2 with x1 < y < z. This contradicts the definition of z. Thus z /∈ U2.
In particular, z < x2, so x1 < z < x2.

Since z /∈ U1 ∪ U2 but A ⊂ U1 ∪ U2, z /∈ A. Thus A is not an interval. �

Proposition VI.3. Let (X, ρ) and (Y, τ) be metric spaces, and let f : X → Y be
a continuous function. If A ⊂ X is connected, then f(A) is connected.

Proof. Suppose that f(A) is not connected. Then there exist disjoint open subsets
V1 and V2 of Y such that f(A) ∩ V1 6= ∅, f(A) ∩ V2 6= ∅, and f(A) ⊂ V1 ∪ V2.

Let U1 = f−1(V1) and U2 = f−1(V2). Then A ∩ U1 6= ∅, A ∩ U2 6= ∅, and
A ⊂ U1 ∪ U2. Thus A is disconnected. �
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2. Intermediate Value Theorem

Proposition VI.4. Let (X, ρ) be a metric space and let K ⊂ X be compact and
connected. Let f : X → R be continuous. Then f(K) is a bounded closed interval.

Proof. The image of a compact set is compact, and the compact subsets of R are
closed and bounded.

The image of a connected set is connected, and the connected subsets of R are
intervals.

The result follows. �

Theorem VI.5 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous
function. If f(a)f(b) < 0, then there exists c ∈ [a, b] such that f(c) = 0.

Proof. Since f is continuous, the image of [a, b] is a bounded closed interval. Since
f(a)f(b) < 0, either f(a) < 0 < f(b) or f(b) < 0 < f(a). In either case, 0 is in the
image. �



Solutions

Exercise VI.5. Let F[a,b] denote the set of all bounded functions f : [a, b] → R.
Let X = F[a,b] and for f, g ∈ X define

ρ(f, g) = max{|f(x)− g(x)| | x ∈ [a, b]}.
Show that (X, ρ) is a metric space.

Exercise VI.6. Let C[a,b] denote the set of all continuous functions f : [a, b] → R.
Let X = C[a,b] and for f, g ∈ X define

ρ(f, g) =
∫ b

a

|f − g| dx.

Show that (X, ρ) is a metric space.

Solution. In order to prove this, we will need these properties of integration:

Lemma VI.6. Let f, g : [a, b] → R be integrable, and let c ∈ R. Then

(a)
∫ b

a
f(x) + g(x) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx;

(b)
∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

Lemma VI.7. Let f : [a, b] → [,∞) be a continuous function. If
∫ b

a
f(x) dx = 0,

then f(x) = 0 for every x ∈ [a, b].

Lemma VI.8. Let f, g : [a, b] → [0,∞) be continuous functions. If f(x) ≤ g(x)
for every x ∈ [a, b], then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

We have ρ(f, f) =
∫ b

a
|f − f | dx =

∫ b

a
0 dx = 0; moreover, Lemma VI.7 tells us

that if the integral of a nonnegative continuous function is zero, then that function
is the zero function; thus ρ(f, g) = 0 ⇒ |f − g| = 0 ⇒ f = g. Thus (M1) follows.

Since |f − g| = |g − f |, clearly ρ(f, g) = ρ(g, f). Thus (M2) follows.
Let f, g, h ∈ C[a, b]. Then |f(x)−h(x)| ≤ |f(x)− g(x)|+ |g(x)−h(x)| for every

x ∈ [a, b], by the triangle inequality for R. Then by Lemmas VI.8 and VI.6,

ρ(f, h) =
∫ b

a

|f(x)− h(x)| dx

≤
∫ b

a

(
|f(x)− g(x)|+ |g(x)− h(x)|

)
dx

=
∫ b

a

|f(x)− g(x)| dx +
∫ b

a

|g(x)− h(x)| dx

= ρ(f, g) + ρ(g, h).

�
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Exercise VI.7. Let (X, ρ) be a metric space, and let G = diam(A) with respect
to ρ. Define a function

ρ̂ : X ×X → R by ρ̂(x, y) =
ρ(x, y)

1 + ρ(x, y)
.

(a) Show that ρ̂ is a metric on X.

Let H = diam(X) with respect to ρ̂.

(b) Show that H ≤ 1.
(c) Show that if G = ∞, then H = 1.
(d) Show that if X is finite, then H = G

1+G .

Solution. Let x, y, z ∈ X; we wish to show that

ρ̂(x, z) ≤ ρ̂(x, y) + ρ̂(y, z).

Let a = ρ(x, y), b = ρ(y, z) and c = ρ(x, z). Then we wish to show that a, b, c ≥ 0
and c ≤ a + b imply

c

1 + c
≤ a

1 + a
+

b

1 + b
.

Now

c ≤ a + b ⇒ c ≤ (a + b) + (2ab + abc) since a, b, c ≥ 0

⇒ c + ac + bc + abc ≤ (a + b) + (2ab + abc) + (ac + bc + abc)

⇒ c(1 + a + b + ab) ≤ a(1 + b + c + bc) + b(1 + a + c + ac)

⇒ c(1 + a)(1 + b) ≤ a(1 + b)(1 + c) + b(1 + a)(1 + c)

⇒ c

1 + c
≤ a

1 + a
+

b

1 + b
.

Let x, y ∈ X. Then

ρ̂(x, y) =
ρ(x, y)

1 + ρ(x, y)
<

ρ(x, y)
ρ(x, y)

= 1;

thus H = sup{̂(ρ)(x, y) | x, y ∈ X} ≤ 1.
Suppose that G = ∞, and let ε > 0. Then there exist x, y ∈ X such that

ρ(x, y) > 1
ε − 1. Now

ρ(x, y) >
1
ε
− 1 ⇔ 1 + ρ(x, y) >

1
ε

⇔ 1
1 + ρ(x, y)

< ε

⇔ 1− ρ(x, y)
1 + ρ(x, y)

< ε

⇔ 1− ρ̂(x, y) < ε.

Since this is true for every epsilon, Thus H = sup{̂(ρ(x, y) | x, y ∈ X} ≥ 1.
Combined with part (b), we have H = 1.

Suppose that X is finite. Then the set {ρ(x, y) | x, y ∈ X} is also finite, and
thus has a maximum, and this maximum is equal to G. Then there exist a, b ∈ X
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such that ρ(a, b) = G. Since f(x) = x
1+x is an increasing function, ρ(a, b) ≥ ρ(c, d)

implies that ρ̂(a, b) ≥ ρ̂(c, d). Thus
G

1 + G
= ρ̂(a, b) = max{ρ̂(x, y) | x, y ∈ X} = H.

�

Exercise VI.8. Let (X, ρ) be a metric space. Let x ∈ X and let A,B ⊂ X be
neighborhoods of x. Show that A ∩B is a neighborhood of x.

Solution. Since A and B are neighborhoods of x, each contains an open set which
contains x; say x ∈ U ⊂ A and x ∈ V ⊂ B with U and V open. Then U ∩ V is
open, contains x, and is a subset of A ∩B. Thus A ∩B is a neighborhood. �

Exercise VI.9. Let S1 be the unit circle together with the subspace metric inher-
ited from R2. Let (an) be the sequence in S1 defined by

an =
(

cos
2πn

6
, sin

2πn

6

)
.

Find the cluster points of (an).

Solution. The sequence (an) takes exactly the six values

{(±1, 0), (±1
2
,±
√

3
2

)}.

Each of these values occurs infinitely often, so this is the set of cluster points. �

Exercise VI.10. Let X be a set and define a metric ρ on X by

ρ(x, y) =

{
0 if x = y;
1 otherwise .

Let (an) be a sequence in X.
(a) Show that p ∈ X is a limit point of (an) if and only if

∃N ∈ N | n ≥ N ⇒ an = p.

(b) Show that q ∈ X is a cluster point of (an) if and only if

∀N ∈ N∃n ≥ N | an = q.

Solution. In a discrete metric space, the singleton set {x} is a neighborhood of x.
Now p is a limit point if and only if ∃N ∈ N | n ≥ N implies that an is in {p}; this
happens exactly when an = p for n ≥ N . Thus (a). Clearly (b) is similar. �

Exercise VI.11. Find an example of a sequence (an) of real numbers and a real
number q ∈ R such that (an) clusters at q but does not converge to q.

Solution. Let an = (−1)n. Then (an) clusters at 1. to see this, let U be a neigh-
borhood of 1, and note that for all even n, of which there are infinitely many, we
have an = 1 ∈ U . By C4, (an) clusters at 1.

However, (an) does not converge to 1, because for all odd n, of which there
are infinitely many, we have an = −1 /∈ U . Since L4 is not satisfied, (an) does not
converge to 1. �
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